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abstract 

 
We have developed a method to predict protein functions using protein 
complex data of Escherichia coli which we obtained from our His-tag 
pull-down experiments. Our method first converts complex data (ex. 
protein A, B and C form complex) into binary protein-protein interaction 
data assuming that all the proteins in the complex interact with each 
other (ex. protein A-B, B-C and A-C interact). One of the ways to predict 
protein function from binary protein-protein interaction data is to assume 
that function of uncharacterized protein is identical to that of interacting 
partner. The accuracy of prediction in this way is estimated to be similar 
to rate of interacting pairs sharing common function, which is 16% in the 
constructed binary interaction network (Schwikowski et al. 2000). To raise 
this accuracy, the method selects interactions which seem to be 
biologically meaningful. In particular, it selects pairs of interacting 
proteins having high expressional correlations and/or those which are 
conserved in similar bacteria (i.e. those which show similar “phylogenetic 
profile”). We succeeded to predict 6 uncharacterized proteins, such as 
yadF and ybeY, at the accuracy of 60-85%. 
 
 

1. Introduction 
 
Thousands of proteins that an organism has in vivo interact frequently with each other 

thickly in biological pathways. Protein-protein interaction (PPI) plays an important role 
in these pathways. PPI information can be used to predict the localizations of proteins, 
and function of hypothetical proteins. Until now, PPI data of S.cerevisiae is available 
from DIP [1] etc. and analysis of genome-wide PPI of S. cerevisiae has been done by 
many researchers. However, analysis of those of Escherichia coli has not been conducted 
because of the limited amount of publicly available PPI data. In this study, we used 
genome-wide PPI data of Escherichia coli produced by Mori lab. 
Our goal of this study is to predict the functions of hypothetical proteins by using PPI 

data obtained from experiments. 
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2. Description 
The two methods we used to describe PPI data are “spoke approach” and “matrix 

approach” (fig.2-1). PPI experiment data produced by Mori lab is the binary data by 
“spoke approach”. By the method, the other proteins (not bait protein) within the 
complex are described to be having interaction with only the bait protein. Within the 
protein complex, all the proteins do not always have interaction with the bait protein 
but with the other proteins in the comlex. So we used “matrix approach” to count all of 
the high-probability protein pairs. 
 By the study of S.cerevisiae PPI data 
[2], the percentage of that PPI pairs 
have the same function category is 
63%. By “spoke approach” and “matrix 
approach” of Escherichia coli PPI data, 
the values are 6% and 16%. These 
percentage means that all of the 
proteins within the complex do not 
have interactions with each other 
proteins. To begin with, the 
experiment data could be including 
false-positive data. In order to predict 
the function of hypothetical proteins, 
the PPI experiment binary PPI data 
must be refined by any method.                fig.2-1: Spoke approach and Matrix approach 
 

3. Refinement 
The experiment method of Escherichia coli we used is “His-tag pull-down experiment” 

and mass spectrometry (MS). The PPI experiment data (15,551 interactions) may 
include “false positive” and binary data produced by “matrix approach” include much of 
wrong data. We think that the PPI pairs within Escherichia coli tend to have common 
function as S.cerevisiae. According to the percentage of PPI that have same function 
(”spoke approach”:6%, “matrix approach”:16%), the data includes many false data. The 
rise of the “the percentage of the same-function PPI pairs” is proportion in the 
refinement, and we used the percentage as the index of refinement. The goal of 
refinement is to raise the percentage to about 60% as S.cerevisiase.We used three 
procedures to refine the PPI experiment data, treatment of disjunction, phylogenetic 
profiling[3] and expression pattern. By these procedures, we removed uncredible data. 



3.1 Treatment of Disjunction and homodimer 
  The PPI experiment data we used includes some of “disjunction”.(fig.3-1) By 
disjunction, all of PPI experiment data cannot be treated as homogeneous dimension.  
 
 
 
 
 
 
                             fig.3-1: Disjunction descriptions  

  With disjunction, 100568 interactions are produced by “matrix approach”. To pick out 
the credible PPI pairs from disjunction, we made reference to PPI database (DIP), 
journals about PPI. By using this reference, we chose strong candidates from 
disjunction, and removed the other data.  
  A homodimer is a structure that consists of two identical substructures. Homodimer 
description in this PPI experiment data, we cannot treat that as PPI data. According to 
mass spectroscopy, interactions data between the same proteins are uncredible. 

As the result of this step, 100,568 interactions are refined to 19,049 interactions. 
 

3.2 Phylogenetic Profiling 
  Phylogenetic profiling allows the prediction of function of uncharacterized proteins. If 
two proteins are functionally linked, they tend strongly to be found in the same subset 
of completely sequenced genomes. The patterns of presence or absence of proteins across 
all known genomes can be used to functionally group a significant fraction of all known 
protein sequences.(fig.3-2) This leads to a deeper understanding of the role many 
proteins play in the cell and infers functions for many hundreds of previously 
uncharacterized proteins. The advantageous effect of PPI prediction by phylogenetic 
profiling is recognized [3].  
 
 
 
 
 
 
 
                              fig.3-2: Phylogenetic profiling 



 To assess the pattern of existence information among the plural species, we searched 
the “homologous gene” among plural species by BLAST and listed the minimum E-value, 
and calculate the correlation coefficient. 
 

3.3 Expression Pattern 
Gene expression and protein interaction data shows that protein pairs encoded by 

co-expressed genes interact with each other more frequently than with random proteins. 
[4] Furthermore, the mean similarity of expression profiles is significantly higher for 
respective interacting protein pairs than for random ones. Expressional correlation of 
interacting pairs are statistically significant but not remarkable.[7] (the PPI protein 
pairs have similar expression pattern.)  
 
 
 
 
 
 

fig.3-2: Expression Pattern 

 To assess the pattern of existence information among the plural species, we used 
correlation coefficient in common with phylogenetic profiling. 
 

4. Result 
 
4.1 By Phylogenetic Profiling 

 
Correlation Coefficient Percentage*1 Same Category*2 Function-Known PPI*3 Refined PPI*4 

More than 0.7 38.6% 51 132 145 

More than 0.8 45.2% 33 73 75 

More than 0.9 57.1% 20 35 37 

*1 : the percentage ( *2 / *3 *100) 
*2 : the number of binary PPI sharing a common function 
*3 : the number of PPI binary data (hypothetical protein excluded) 

*4 : the number of PPI binary data (refined by phylogenetic profiling) 

Table.4-1: The refinement by phylogenetic profiling 

(Table.4-1) The percentage of PPI sharing same function (accuracy of refinement) is up 
to 57.1% (correlation coefficient is more than 0.9). Although the number of refined PPI 
data is small, the refinement by phylogenetic profiling is validated. 



 
4.2 By Expression Pattern 

 
Correlation Coefficient Percentage*1 Same Category*2 Function-Known PPI*3 Refined PPI*4 

more than 0.7 38.6% 351 909 997 

more than 0.8 51.2% 297 580 610 

more than 0.9 79.8% 154 193 196 

*1 : the percentage ( *2 / *3 *100) 
*2 : the number of binary PPIs sharing a common function 
*3 : the number of PPI binary data (hypothetical protein excluded) 

*4 : the number of PPI binary data (refined by expression pattern) 

Table.4-2: The refinement by expression pattern 

(Table.4-2) The percentage of PPI sharing same function (accuracy of refinement) is up 
to 79.8% (correlation coefficient is more than 0.9). Remarkably, the expression pattern is 
useful method to refine the PPI experiment data.  
 

4.3 Refined PPI Experiment Data 
 

Correlation Coefficient Percentage*1 Same Category*2 Function-Known PPI*3 Refined PPI*4 

more than 0.7 36.7% 364 991 1090 

more than 0.8 49.0% 305 623 653 

more than 0.9 75.6% 167 221 225 

*1 : the percentage ( *2 / *3 *100) 
*2 : the number of binary PPIs sharing a common function 
*3 : the number of PPI binary data (hypothetical protein excluded) 

*4 : the number of PPI binary data (refined by phylogenetic profiling & expression pattern) 

Table.4-3: The refinement by phylogenetic profiling & expression pattern 

 
(Table.4-3) We cumulated the refined data by two methods. The number of refined 

PPI is 225 interactions, and the percentage of PPI sharing same function (accuracy of 
refinement) is up to 75.6% (correlation coefficient is more than 0.9). If the rate of PPI, 
that have the same function, is more than about 60% as S.cerevisiae, these refined PPIs 
have considerable credibility. Although the refined PPI data by phylogenetic profiling 
reduced the rate of same function (79.8% → 75.6%), the result of each method has very 
few crossover. We treated this data as refined PPI data to predict functions of 
hypothetical proteins. 
 



5. Prediction of hypothetical protein’s function by using PPI data 
Two methods to refine PPI experiment data, phylogenetic profiling and expression 

pattern, have correlation with protein function closely. 75.6% of the refined PPI data by 
these methods (correlation coefficient is more than 0.9) has the same function. By using 
these binary data, we can predict hypothetical protein’s function with accuracy of 
75.6%. 

 
5.1 Method 

 
 
 
 
 
 
 
 

  fig.5-1: PPI network (refined PPI data)                     fig5-2: The method to predict protein’s function 

 
According to the PPI network described from refined PPI data(fig.5-1) of Escherichia 
coli, the size of protein complex within Escherichia coli is huge. Each of proteins is 
colored by function category. As the color division, the same function proteins tend to 
interacting closely within the protein complex. Our method to predict functions of 
hypothetical proteins is based on this feature of complex. The steps of the method is,  
 

1: to list the proteins having interaction with a hypothetical protein. 
2: to choose the main function category around a hypothetical protein from the list. 
3: to predict the function category as the main function category (step2) 

step 1～3 is performed for every hypothetical protein. 
 
The main function category around a hypothetical protein is the protein that is the 
largest number around the hypothetical protein.(ex. the functionA is largest around a 
hypothetical protein, main function is functionA). The concept of this method is called 
“guilt-by-association”.[7] The protein complex is the assembly of PPI pairs sharing same 
function. 
 
 



5.2 Result 
  We predicted 6 hypothetical protein’s function.(Table.5-2) 

gene name Function of hypothetical protein predicted by refined PPI data 

pdxK Biosynthesis of cofacters, prosthetic groups, carriers 

vacB Translation 

ycdX Biosynthesis of cofacters, prosthetic groups, carriers 

yihK Translation 

ylaB Other categories 

yleA Translation 

table.5-2: predicted function of hypothetical protein predicted by refined PPI dataSummary and 
Discussion 

We recognized the efficiency of each two methods to refine PPI experiment data. The 
number of PPI experiment data is refined from 100,568 to 225 at the accuracy of 75.6%. 
By using this refined PPI data, we predicted 6 functions of hypothetical proteins at the 
accuracy of 75.6%. Although the value is high enough to predict the functions, we guess 
the number of refined PPI is fewer than real data. We need the study focused on the 
number of PPI with a certain level of accuracy. 
Some of the protein complexes of Escherichia coli 

are extremely huge and it is difficult to recognize 
and study the network of interaction. The system 
to compart the huge complex to small matrix is 
needless. (fig6-1) 

fig.6-1: the example of comparted PPI network  

7. Outlook 
Essential gene tends to have interactions with many proteins. A large amount of 
connections around the essential genes make the recognition of protein network difficult. 
To recognize the protein network of Escherichia coli, we will find essential gene from 
refined PPI network and classify the refined PPI data by removing essential genes.  
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