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Abstract

When Saccharomyces cerevisiae are grown continuously, respiration autosynchronises resulting

in stable oscillatory dynamics, where small molecules mediate communication. Transcriptome-

wide and metabolome-wide studies indicate that the oscillation functions to temporally separate

catabolic and anabolic processes. Consistent with this, the production of amino acids have distinct

phase relationships with the oscillation cycle where amino acids are produced in conjunction with

reductive phase. In addition, oscillation is highly sensitive to amino acid and Rapamycin pertur-

bation. These data indicate a role for the master amino acid regulator Gcn4p in the regulation

of oscillatory dynamics, where the Gcn4p is activated by non-aminoacylated tRNAs. Therefore

we explore the role of non-aminoacylated tRNAs in oscillatory regulation by constructing a reg-

ulatory model of amino acid regulation then testing this experimentally to provide a mechanistic

understanding of amino acid feedback on gene regulation. We will also discuss the context of our

work in the emergence of coherent behavior in biochemical networks.

1 Introduction

Cell adapts with varying metabolic requirements by changing its metabolite pro�le along with tran-
scriptome and proteome. Metabolite mediated regulation is mostly exerted by small molecules bind-
ing and changing functionalities of transcription factors, translational regulators, enzymes and RNA
molecules [4, 13, 2]. These metabolite mediated regulations result in the self-organisation of metabolic
structure of the cell [7]. However, compare to our knowledge of protein-protein interactions and
protein-DNA interaction, biochemical mechanisms that link the metabolite to transcriptome and pro-
teome are poorly understood [4]. Therefore, to investigate the links between metabolite to transcrip-
tome and proteome, we have used continuously grown Saccharomyces cerevisiae as model organism.

Continuously grown cultures of yeast cells show robust oscillations in respiration. The oscillations
can be observed by monitoring the residual oxygen levels in the medium [14]. This synchronization
of oscillation is the result of inter-cellular communication and is also correlated to the NAD(P)H and
ATP oscillations (redox and energy metabolism). Analysis of gene expression level has shown speci�c
patterns in expression during the period of oscillation [11]. This further suggests that metabolism
related inter-cellular communication in�uences gene expression. Previous studies have suggested that
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Figure 1: Post transcriptional activations of Gcn4p
a. In non-amino acid starvation condition TORp mediated pathway keeps the Gcn2p phosphorylated
and leaving eIF2-alpha unphosphorylated. Unphosphorylated eIF2-alpha forms matured ternary com-
plex which further inhibit the activation of Gcn4p. b. During amino acid starvation, high level of
uncharged tRNAs accumulate in the cell and form complex with Gcn2p. This uncharged tRNAs-
Gcn2p complex phosphorylate the eIF2-alpha and hinders the matured ternary complex formation
and consequently activates Gcn4p. c. During rapamycin perturbation, TORp mediated pathway pre-
venting Gcn2p to be phosphorylated. Unphosphorylated Gcn2p then phosphorylates the eIF2-alpha
and resulting the activation of Gcn4p.

this oscillation plays a pivotal role in the temporal separation of catabolism, anabolism and cell cycle
mechanisms [11]. Consistent with this, the production of amino acids have distinct phase relationships
with the oscillation cycle where amino acids are produced in conjunction with reductive phase. In
addition, amino acid biosynthesis is tightly regulated and the system is hyper-sensitive to nM concen-
trations of Rapamycin during the oscillation. This suggests that the function of general amino acid
control system is tightly linked with the oscillatory response. Therefore we investigate the amino acid
feedback on gene regulation in oscillatory regulation by constructing a regulatory model of amino acid
regulation then testing this experimentally to provide a mechanistic understanding of this feedback
system.

Previous studies have shown that genes involved in amino acid biosynthesis are mostly controlled by
a master transcriptional regulator called Gcn4p [6]. The Gcn4p is post transcriptionally activated by
non-aminoacylated tRNAs through a Gcn2p and eIF2-alpha (Eukaryotic initiation factor 2) mediated
pathway [12, 10] (�gure 1). When amino acid levels are high in the cell, the Gcn2p remains phospho-
rylated and leaving the eIF2-alpha unphosphorylated. In unphosphorylated state, eIF2-alpha forms
matured ternary complex [12, 6]. Presence of high number ternary complex hinders the translation of
Gcn4p by initiating translation from any of the four upstream ORF (open reading frame) of GCN4
mRNA [10]. However, it has been shown that increase in the concentration of non-aminoacylated
tRNA result in the formation of complex with Gcn2p [10, 12]. This non-aminoacylated tRNA and
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Gcn2p complex then phosphorylates the eIF2-alpha which reduces the formation of matured ternary
complex [6, 10]. Reduction in the number of matured ternary complex increases the probability of
ribosomal scanning to skip four uORFs of the GCN4 mRNA and reaching the actual start codon then
initializing the translation by 50 percentage [6].

Based on the above mentioned observations, we assume that during amino acids starvation condi-
tion non-aminoacylated tRNAs accumulate due to the reduction in the concentration of intracellular
amino acids. Accumulation of non-aminoacylated tRNAs then post transcriptionally activates Gcn4p
and there by amino acid biosynthesis genes. Therefor charging and unchanging (aminoacylation and
non-aminoacylation) of the tRNAs could be the signal which links the amino acids to the transcrip-
tome. In this progress report I have discussed about the studies and observations we have done to
verify this regulatory model of amino acid regulation.

2 Methods

The IFO 0233 strain of yeast cells are used for all of the following experiments. The yeast cells are
grown in precise continues culture conditions in fermenters as described in reference[14, 11]. The time-
series experiments were conducted on yeast cells showing respiratory oscillation (50 minutes oscillation
cycle). From this continues cell culture 40 time points sampling were performed with �ve minutes
interval.

2.1 RNA Extraction

The RNA extraction method used in this study was modi�ed from the original method described in
the following reference[8]. In order to extract the total RNA, 500µl of yeast cells were quenched with
1ml of ethanol and kept in -80°C for overnight. The samples were then pelleted by centrifuging at
10,000g for 2min in 4°C followed by re-suspending the pellets in 250µl of sodium acetate bu�er (0.3
M sodium acetate pH 4.5-5.0; 10mM Na2EDTA). Then one volume of phenol (250µl) equilibrate with
sodium acetate; and zirconium beads (mixture of 0.1 and 0.5 mm approximately 300µl volume) were
added into the samples. The cells were then disrupted by bead-beating 12 times for 10 seconds with
30 second interval in between. The samples were then centrifuge at 12000g for 15 min in 4°C and
moved the aqueous phases into new tubes. An aliquot of 125µl of sodium acetate bu�er was added
into into the phenol phase for back extraction. The back extracted aquas phases ware combine with
the previous aqueous phases. The aquas phases ware then mixed with 2.5 volumes of ice-cold ethanol
and kept overnight at -20°C. The RNA was pelleted by centrifuge at 12000g for 30 min in 4°C. The
pellets were washed three times in 70% ethanol and dry by keeping the lid open. The pellets were then
dissolved in 50µl of 10mM sodium acetate (pH4.5-5.0) followed by quick froze and stored in -80°C.
The RNA concentration was determined by optical density measured using GenQuant pro (amersham
pharmacia biotech) apparatus.

2.2 Metabolite Extraction

In order to extract the metabolites, 1ml of yeast cells were quenched with 1ml Methanol (-70°C) and
pellet was obtained by centrifuging at 20400g in -9°C. The pellet was re-suspend well in 500µl of
-70°C methanol containing internal standards (CSA, MES and 3-AP). This sample was mixed with
chloroform and distilled water in a 1:1:0.4 ratio, and sonicated at -4°C followed by centrifugation at
20400g for 10 mins in -9°C. The supernatant was then centrifuged for 2 hours at 20000g (-9°C) in 5kDa
cuto� tubes to remove the proteins. The �ltrant was lyophilised for CE-MS analysis. This method
was performed in �ve di�erent ways by following the parameters given in Table 1.
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Method Quenching Standards Chloroform Sonication Freeze-thaw in Lyophili-

(minutes) LN2(times) zation

1 Yes 500µl (40µM) Yes 5, 10, 20 No Yes

2 No 500µl (40µM) Yes 5, 10, 20 No Yes

3 Yes 500µl (40µM) 1No No 0, 10, 10 Yes

4 Yes 100µl (200µM) No No 3, 5, 10 No

5 Yes 100µl (200µM) No No 3, 5, 10 No

Table 1: Parameters used for the metabolite extraction.
Each method carried out in triplicates. In method 5, the samples were �ltered through 0.1 and 0.22
cuto� tubes after the freeze-thaw step.
1 Chloroform is added in one sample among the triplicates. 2liquid nitrogen.

2.3 RT-PCR

The RT-PCR reactions were preformed on Opticon DNA Engine (MJ research) instrument according
to the instructions given on Express Sybr Green kit. The sequences of GCN4 primer pairs used are
5' AACAGGATACCCCTTCGAACC 3' (left) and 5' AACGGTCTTGGCATCAGGTG 3'(right).

2.4 Acid urea polyacrylamide gel

Approximately 20µg of RNA were run on 6.5% acid urea polyacrylamide gel having the dimension
of 0.5mm x 20 cm x 40 cm. Gel mixture was prepared with the �nal concentration of 6.5% Long
Ranger, 0.1 M sodium acetate pH5.0 and 8M urea. The ingredients were dissolved under stirring
and adjusted the volume to 80ml followed by degassing for 5-10min. Freshly prepared ammonium
persulfate (0.7% w/v) and TEMED (0.15% v/v) were added just before casting the gel followed by
allowing to polymerize for ~20 min. After electrophoresis the gel was �xed in �xing bu�er (5% acetic
acid, 5% methanol and 90% distilled water) for 10 minutes followed by staining with GelRed solution.
The gel image was obtained by scanning on Typhoon 9400 scanner.

3 Results

Previous studies have shown that Gcn4p is the master regulator of amino acid bio synthesis [6, 12].
In order to get a focused view on the role of Gcn4p in amino acid biosynthesis, we have constructed
an enzyme-metabolite [9], protein-protein [1], protein-DNA [5] interaction map of yeast cell (�gure
2). This map has clearly shown that most of the edges from Gcn4p are connected to the amino acid
biosynthesis genes which again con�rms the master regulator role of Gcn4p in amino acid biosynthesis.

Prior to all of the following experiments, the total RNA concentration were obtained (see methods
section) and plotted against the dissolved oxygen concentration during the respiratory oscillation, to
observe the total RNA turn over (�gure 3). Form these analysis we observed that the total RNA
concentration shows approximately .6 fold di�erence during the respiratory oscillation. Interestingly
we have also observed a pattern in the change of RNA concentration during respiratory oscillation by
precise analysis of RNA samples (data not shown).

To investigate the role of charged and uncharged tRNAs ratio in the activation of Gcn4p with
varying intracellular amino acid concentrations during respiratory oscillation, we have run time series
RNA samples which extracted form yeast cells showing respiratory oscillation on acid urea polyacry-
lamide gel (see methods for details) (�gure 4). The ratio between charged and uncharged tRNA
concentrations were calculated based on the densitometry analysis results. These ratios were then
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Figure 2: The amino acid biosynthesis map
The amino acid biosynthesis model constructed by integrating enzyme-metabolite [9], protein-protein
[1], protein-DNA interactions[5]. Production or expression of each component in the model are mapped
with the phase angles of respiratory oscillation (color gradient from -pi to pi) where pi is the minimum
�rst derivative of the dissolved oxygen trace. The oscillation strength of each component is represented
as the diameter of the symbol.
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Figure 3: Total RNA turn over during the respiratory oscillation
The blue line indicates the dissolved oxygen (DO) level in the media during respiratory oscillation.
The red line indicates total RNA concentration. The right side y axis is the total RNA concentration
in µg/µl.

Figure 4: 20 time point of charged and uncharged tRNAs
A continuously grown culture of Saccharomyces cerevisiae showing oscillatory dynamics was sampled
at 5 min intervals (40 samples). Total RNA was extracted and run on acid urea-PAGE gel on 20
consecutive samples. The upper bands are the aminoacylated tRNAs and lower bands are the non-
aminoacylated tRNAs.
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Figure 5: Transcript levels of GCN4 during respiratory oscillation
The blue line indicates the dissolved oxygen (DO) level in the media during respiratory oscillation.
The red line indicates GCN4 mRNA concentration.

plotted against dissolved oxygen concentration. Interestingly we have observed that the charged and
uncharged tRNA ratios oscillates during the respiratory cycle. The ratio is high during reductive
phase and lower during oxidative phase.

It has been shown that Gcn4p activation is mostly exerted on post transcriptional level [3, 6] where
the mRNAs are rather stable during the respiration cycle[11]. Therefore to observe the transcript
levels of GCN4 during respiratory oscillation we have performed RT-PCR analysis on 40 time point
total RNA samples with GCN4 primers (see methods for details) (�gure 5). As expected the GCN4
transcripts have appeared to be maintaining stable levels during respiratory oscillation, which shows
that GCN4 transcription has no or very less impact from respiratory oscillation.
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4 Future work and discussion

Based on the above mentioned results and analyses we have made a hypothetical model of self or-
ganization of amino acid regulation in yeast (�gure 6). According to our model, when intracellular
amino acid concentrations are low uncharged tRNA will get accumulated. Accumulation of uncharged
tRNAs will then activates the Gcn4p translation, which further leads to the activation of amino acid
biosynthesis genes. Activation of these genes will produce the enzymes which catalyze the amino
acid production and resulting increase in the intracellular amino acid concentration. Increase in the
intracellular amino acid concentration subsequently hinders the Gnc4p activation by increasing the
concentration of charged tRNAs.

Our preliminary analysis on charged and uncharged tRNAs during respiratory oscillation has
shown that the charged-uncharged tRNA ratios have an oscillatory pattern which is in-phase with
the respiratory oscillation. This oscillation in charged-uncharged tRNA ratios and the steady state
of GCN4 transcripts during the respiratory oscillation are supporting our hypothesis that Gcn4p
activation could be mediated by the charged-uncharged tRNA ratios. However, in order to strengthen
this argument we are planning to measure the Gcn4p concentration and Gcn2p phosphorylation rates
during respiratory oscillation. In addition, quantifying the aminoacyl tRNA synthetase and correlating
it with the tRNA charging ratio might broaden the view on this process. As the �nal step we are
planning to integrate the above mentioned results and correlate with the amino acid concentration
levels during the respiratory cycle (the amino acid concentrations were obtained from CE-MS analysis
of time series samples; data not shown), thus closing one (of many) feedback cycles underlying the
dynamics of yeast redox oscillation.
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