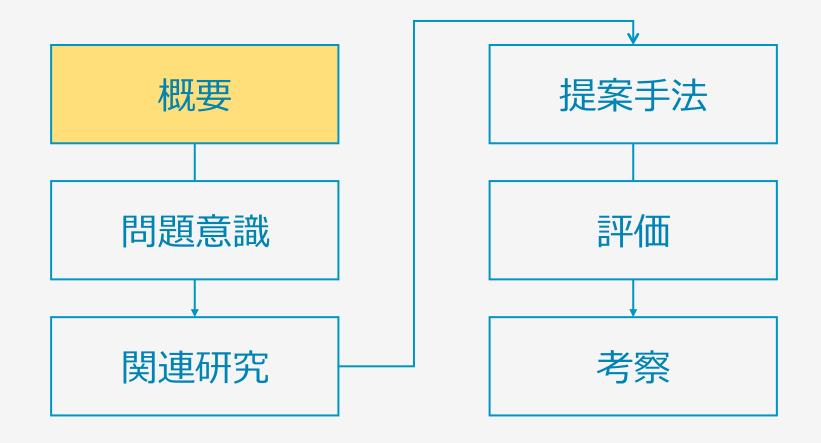

画像データの学習クラスタリング


ITシステムプロジェクト

政策・メディア研究科 修士1年 笹本 将平

一言で言うと、

ユーザーが意図するクラスターを得るための

<u>クラスタリングパラメーター調節法</u>を提案する。

クラスタリングとは

クラスタリング

あるデータの集合に対して分類をし、 似ているもの同士をグルーピングする手法。

- 一般的には、教師なしデータを用いる
- 人間が分類できないほどの大量のデータを 分類する場合に有効
- 代表的なものにK平均法(k-means)や、 Ward法などがある

階層的クラスタリング

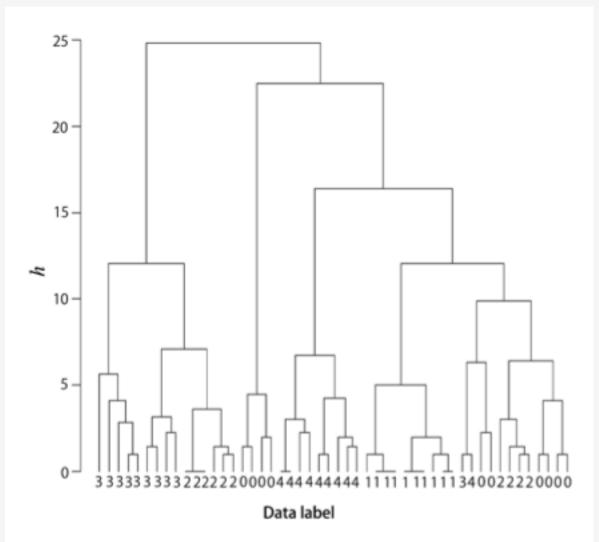
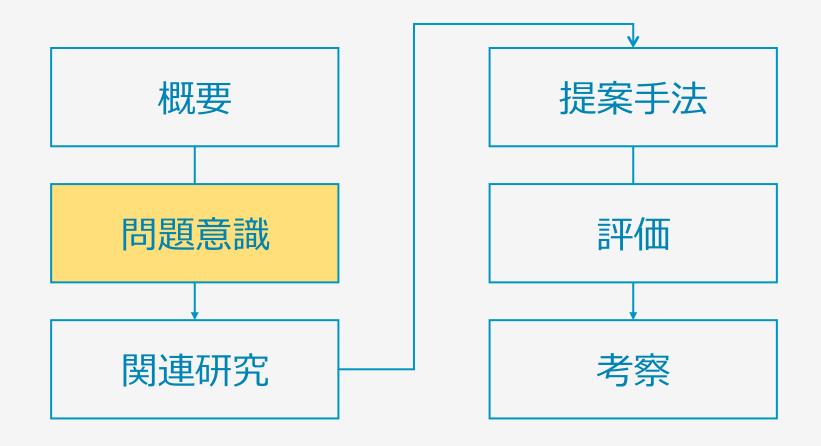



図 1 樹形図の例.

Fig. 1 Example of tree.

- 対象間の非類似度を 手がかりとして、 樹状の分類構造を つくる
- N個のデータを入力 すると、1~N個の クラスタを得る
- 色々な手法がある
 - Ward法
 - 群平均法
 - McQuitty法

要するに

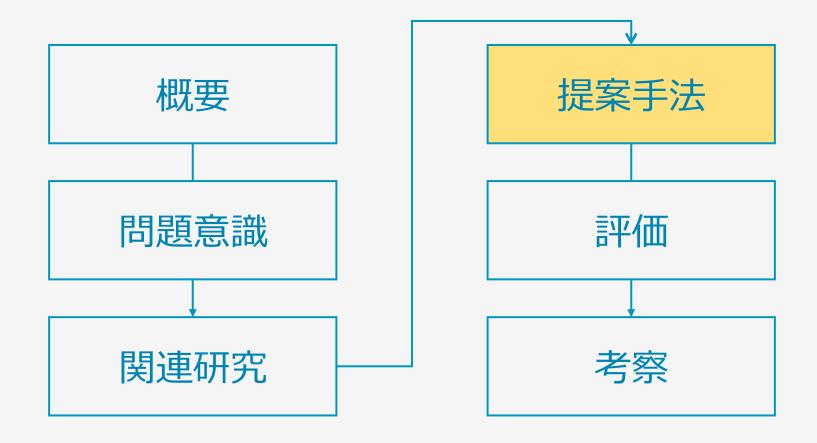
クラスタリングをしても意図するクラスターが 得られない。

- k-means → 毎回結果が変わるし、クラスタ数が未知だと適用不可

階層的クラスタリング

- 得られた樹形図を切る高さによって、得られるクラスター数が異なる
- 手法と非類似度の定義の組み合わせによって、樹形図の高さや形成されるクラスターが異なる

正しいクラスター数を得るには クラスター数パラメーターを適切に決める 必要がある。



階層的クラスタリング

- 自動でクラスター数を決める手法だと
 - 期待するクラスターと一致しない
 - クラスター数が一致しても、クラスタリング 精度が悪い

クラスタ数精度とクラスタリング精度を 改善するために、データを適切に変換する 必要がある。

登場する単語

- クラスター数精度: P_N
- クラスタリング精度: Pc
- クラスタリングパラメーター
 - -データ変換パラメータ: σ_c s_c
 - クラスター数パラメータ: hc

- 階層的クラスタリング手法に、以下の2つを導入
 - クラスター数パラメータ
 - 正しいクラスタ数を得るため
 - データ変換パラメータ
 - クラスタ数精度とクラスタリング精度を改善するため
- この2つのパラメータを調整する手法

- 1. 学習データの作成
 - 1. データの一部を抽出
 - 2. 人手でクラスタリング
- 2. 学習ステップ
- 3. 評価ステップ

学習ステップ

- 1. データ変換パラメータの調整
- 2. 学習用データの変換
- 3. 学習用データのクラスタリング
- 4. P_Nの計算 & h_cの調整
- 5. P_Cの計算
- 6. 最適なパラメータの探索が終了したらexit それ以外なら1に戻る

学習ステップ

- 1. データ変換パラメータの調整
- 2. 学習用データの変換
- 3. 学習用データのクラスタリング
- 4. P_Nの計算 → h_cの調整
- 5. P_Cの計算
- 6. 最適なパラメータの探索が終了したらexit それ以外なら1に戻る

クラスター数精度: P_N

$$P_N = \left(1 - \min\left(\frac{|K' - K|}{K}, 1\right)\right) \times 100$$

K:本来のクラスタ数

K': クラスタリングの結果得られたクラスタ数

クラスター数パラメータ: h。

$$h_c = (h_{\text{max}} + h_{\text{min}})/2$$

h_{max}: P_N=100%となる分類木の高さの最大値

h_{min}: P_N=100%となる分類木の高さの最小値

学習ステップ

- 1. データ変換パラメータの調整
- 2. 学習用データの変換
- 3. 学習用データのクラスタリング
- 4. P_Nの計算 & h_cの調整
- 5. P_Cの計算
- 6. 最適なパラメータの探索が終了したらexit それ以外なら1に戻る

クラスタリング精度: Pc

$$P_C = \frac{\left(\sum_{i=1}^K P_i\right) \times 100}{K}$$

K:クラスタリングの結果得られたクラスタ数

P_i: クラスタC_i (i=1~K) の分類精度(0~1)

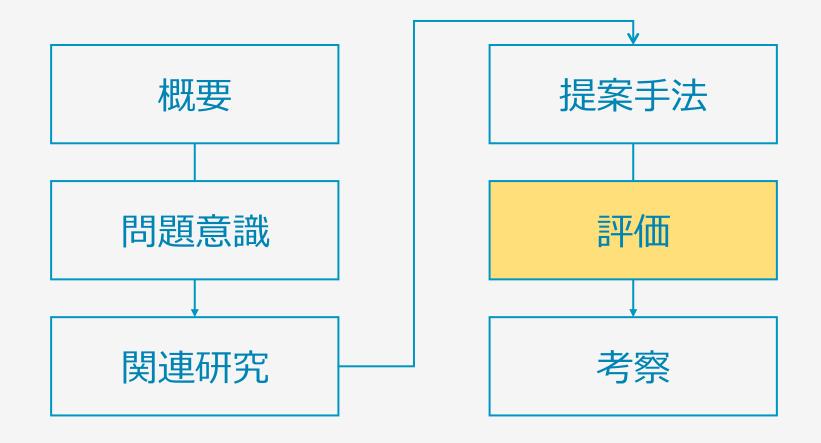
学習ステップ

- 1. データ変換パラメータの調整
- 2. 学習用データの変換
- 3. 学習用データのクラスタリング
- 4. P_Nの計算 & h_cの調整
- 5. P_Cの計算
- 6. 最適なパラメータの探索が終了したらexit それ以外なら1に戻る

データ変換パラメータ:σ_c, s_c

画像の変換手法は既存研究を参考...

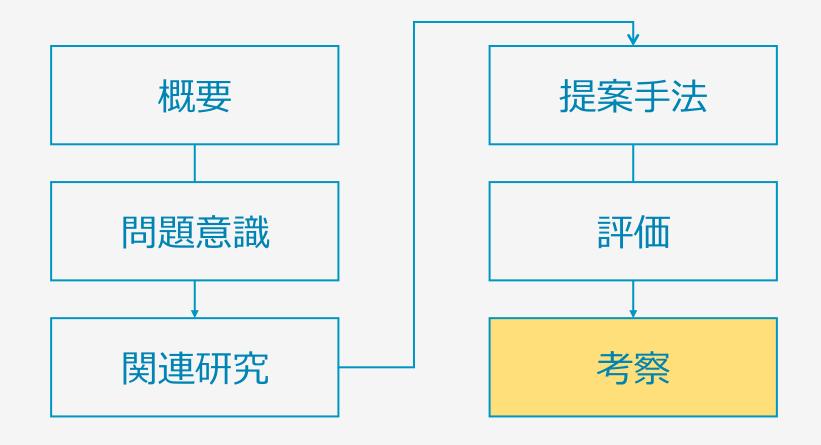
クラスタリング精度Pcとクラスター数精度Pn が最も高くなるσとsを求める。


σ: ガウスフィルタのパラメータ

s:SOMの学習ステップ数

評価ステップ

- 1. 得られたデータ変換パラメータを用いて 評価用データの変換
- 得られたクラスタ数パラメータを用いて 評価用データのクラスタリング
- 3. P_NおよびP_Cの計算



- 0~9の手書き文字の認識
 - 0~3を学習データ、4~9を評価用データとした

ご静聴ありがとうございました

SAMPLE SLIDE

- 発表用に調整されたシンプルデザイン
 - 1 フォント

和文フォントを<u>メイリオ</u>、欧文フォントを Segoe UI にデフォルト設定。

2 カラー

黄色と水色の彩度を落とし、<u>明るい印象</u>を 残したまま、落ち着いた配色設定。

3 見本付き

オブジェクトやテキストの実際の配置や デザインの<u>見本用スライド</u>があります。

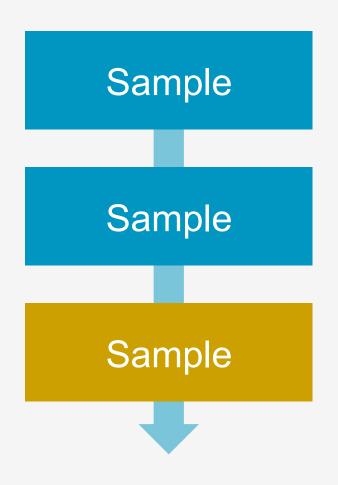
Aについて

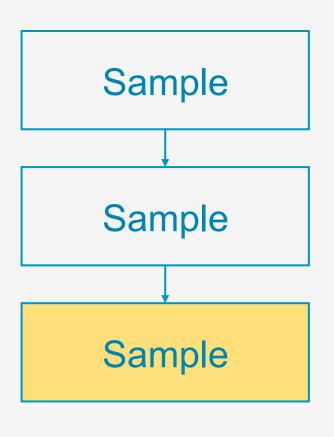
- SAMPLE
 - A
 - A

Bについて

- SAMPLE
 - B
 - B

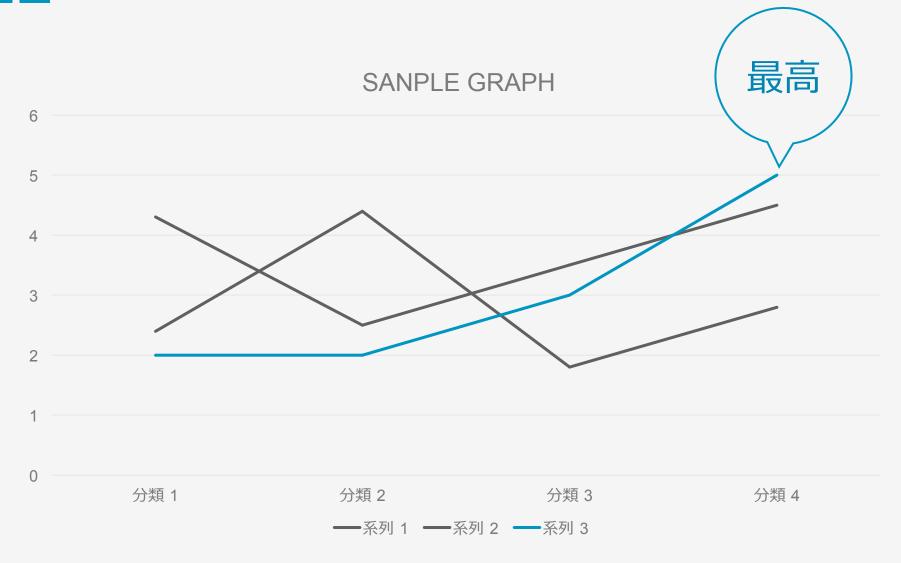
セクションの区切りなどに




見本 通常の箇条書きスタイル

- 第1項目のサンプル
 - 第2項目のサンプル
 - ・ 第 3 項目のサンプル
 - 第3項目のサンプル
- 第1項目のサンプル
 - 第2項目のサンプル
 - ・ 第 3 項目のサンプル
 - 第3項目のサンプル

見本|オブジェクト



素 材	器具	結 果
素材01	器具X	0.01%
素材01	器具Y	0.33%
素材01	器具Z	0.03%
素材02	器具X	0.95%
素材02	器具Y	0.22%

見本|グラフ

見本 文章の見せ方の例

見出しはこのような感じで

本文はこのような感じで書き、強調する時は **太字にする**か、<u>下線を引く</u>ようにする

- 箇条書きも同様にする
- 特に重要な用語には色もつける
- 文章はなるべく位置をそろえ、色は水色と黄土色を使いまわすように

まとめはこのような感じで堂々と