
A Dynamically Switchable Scheduling System for
Operating Systems in Wireless Sensor Networks

Yoshiki Komachi
∗

Graduate School of Media and Governance
∗
, Keio University

ysk@sfc.keio.ac.jp

ABSTRACT
Operating Systems (OS) in wireless sensor nodes can be clas-
sified into event-driven systems or multithreaded systems.
Most event-driven systems, such as TinyOS [4], drive down
power consumption although context switching for real-time
processing is not available. Among multithreaded systems,
non-preemptive systems, such as Protothreads [2] in Con-
tiki [1], often have lack of real-time processing capability. In
Protothreads, if a higher-priority task was posted while a
lower-priority task has been running, the lower-priority task
cannot be preempted. Thus, one challenge is that without
changing the semantics of Protothreads, how the system can
be preemptive as well as lowering the power consumption for
real-time tasks such as target tracking.

In this paper, we propose a dynamically switchable schedul-
ing system for operating systems using Protothreads where
events with time constraint have occurred. This system
enables to trigger interruption, to process real-time tasks
preferentially when real-time events occurred, and to save
energy by executing tasks except real-time tasks as a stan-
dard event-driven system. Exeprimental results show that
latency in Contiki is reduced by about 75% in the best case
and is kept constant with power efficiency.

Keywords
Real-Time Processing; Low Power Consumption

1. INTRODUCTION
Along with cheaper and high performanced sensor nodes,

Wireless Sensor Networks (WSN) are widely used in various
application domains. There are various types of applications
adapted to WSN, such as habitat monitoring, health moni-
toring, and target tracking. In target tracking applications,
specific tasks (e.g., a task for detection of targets) must be
processed with power efficiency as well as in real-time.

Operating Systems in wireless sensor nodes can be clas-
sified into event-driven systems or multithreaded systems.
Not based on preemption, event-driven systems are built
with low energy consumption. However, on event-driven sys-
tems, it is difficult to develop various applications and tasks
are not processed in real-time. On the contrary to event-
driven systems, most multithreaded systems which handle
preemptive multitasking support real-time processing. Nev-
ertheless, context switching makes multithreaded systems’
power consumption higher.

Nano-RK [3], a multithreaded system in WSN, supports
fixed-priority preemptive multitasking. This system enables

hard and soft real-time processing by different two schedul-
ing algorithms. In standard multithreaded systems (e.g.,
Nano-RK), variables’ values are kept by being stored states
of registers if interruption has occurred. The values are
read again, and the processing is resumed after execution
of the currently executed task was completed. Besides regu-
lar processing, these extra processing for context switching
needs extra power. Therefore, power consumption of multi-
threaded systems is higher than other event-driven systems.

In Contiki, an event-driven system, Protothreads enables
switching between tasks as same as other multithreaded sys-
tems, and processes will be executed if events are received.
Events are inserted into an queue when the events occurred,
and the events are kept in the queue until the events are ac-
cepted in First In First Out (FIFO) order. Unlike standard
multithreaded systems, in Contiki using Protothreads, uti-
lization of CPU will be abandoned by return values, which
enables keeping power consumption lower. In case of switch-
ing between tasks, timers are not used for interruption in
current Protothreads. Tasks are inserted into the queue
when the timer’s counts were larger than current time. The
task that manages the timers is periodically executed, its
priority is equal to the other tasks’ priority.

2. PROBLEMS
There are tradeoffs between low power consumption and

real-time processing. This is because event-driven systems
are designed on the assumption that tasks are not inter-
rupted, and context switching by saving states of registers
needs much energy in multithreaded systems. However,
both keeping power consumption lower under normal condi-
tions and real-time processing in case of occurrence of real-
time events are needed in the specific situations (e.g., target
tracking).

Although Protothreads implemented on the event-driven
system enables switching between tasks, this system is un-
able to interrupt an executed task, to switch to higher-
priority tasks, and to execute these tasks when these tasks
wait for execution. This is because the scheduler will not be
executed unless an executed task issues a return instruction.

3. DESIGN
Our system consists of many event handlers and an event

loop. The event loop waits for the arrival of events, and an
event handler correlated with the event would be executed.
During execution of the event loop, an executed task is in-
terrupted, and the current thread is switched to a real-time
thread when real-time event was issued. Execution of the



Figure 1: Latency in Our System Figure 2: Latency in Contiki Figure 3: Power Consumption

The Module for 
Selection of Executed Tasks

The Module for
Management of Contexts

The Module for Management of Tasks

The Module for Initialization of Tasks

The Module for Execution of Tasks

Register Tasks with The List

Select Tasks to Execute

Execute Selected TasksStop utilizing The CPUSet The Timer

Post Tasks

The Module for Control of Interruption

The Module for Management of Contexts

The Module for Execution of Real-TIme Tasks

Execute of Real-TIme Tasks
Complete Execution

Save The Main Thread
Restore The Thread for Exec of RT Tasks

Save The Thread for Exec of RT Tasks
Restore The Main Thread

Forbid
Interruption

Check Tasks to Execute

Permit
Interruption

The Module for Detection of Real-Time Events

Figure 4: System Architecture

event loop is resumed again after execution of the real-time
task was finished. Our system enables switching between
tasks by Protothreads for general events except real-time
events. Figure 4 shows system architecture of our system.

4. EVALUATION

4.1 Evaluation Environment
We evaluate the latency, time from occurrence of real-time

events to being executed intended tasks, by increasing the
number of tasks and an incidence of events little by little. In
this evaluation, Cooja [5], a simulator designed for Contiki
on virtual machines, are used.

In order to evaluate power consumption, an application
that randomly sends current battery voltage as real-time
events to the base station is deployed to actual equipment.

4.2 Discussion
In Contiki, if events waiting for execution have been al-

ready inserted at the moment of real-time events’ occurence,
high latency could be observed. This is because events are
inserted in FIFO order. Against Contiki, when real-time
events were issued, our system enables real-time tasks to be
executed by interruption of current execution if a current
task are being executed. This leads to lower latency.

According to Figure 1, the time from issue to execution
is constant although our system needs as much as 80ms to
execute real-time tasks. In wireless sensor nodes, since radio
modules require the highest power, refraining from utilizing
wireless communication per a unit leads to lower power con-
sumption. Our system enables radio to be turned on peri-
odically, which results in realization of power saving. Figure
3 shows that our system is comparable to Contiki in power
consumption in spite of making Contiki preemptible.

In standard multithreaded systems, as each task has each

priority, both interruption and context switching are needed
whenever tasks which have higher priority than an executed
task wait for execution. In our system, since general tasks
except real-time tasks are handled like event-driven systems,
the number of both interruption and context switching can
be reduced.

5. CONCLUSIONS
Under normal conditions, in our system as the event-

driven system, event handlers associated with occurred events
are executed. When real-time events occurred, a current
task is interrupted, and execution of the interrupted task
will be resumed as soon as execution of the real-time task
is completed. As a result of experiments, our system en-
ables real-time tasks to be executed within 82ms, which is
about 25% of the execution latency of Contiki. Further-
more, latency is kept constant without drastically increasing
in power consumption.

6. REFERENCES
[1] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a

lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks, LCN ’04, pages 455–462, Washington, DC,
USA, 2004. IEEE Computer Society.

[2] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.
Protothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings
of the 4th International Conference on Embedded
Networked Sensor Systems, SenSys ’06, pages 29–42,
New York, NY, USA, 2006. ACM.

[3] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-rk: An
energy-aware resource-centric rtos for sensor networks.
In Proceedings of the 26th IEEE International
Real-Time Systems Symposium, RTSS ’05, pages
256–265, Washington, DC, USA, 2005. IEEE Computer
Society.

[4] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler.
Tinyos: An operating system for sensor networks. In in
Ambient Intelligence. Springer Verlag, 2004.

[5] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. In Local Computer Networks, Proceedings 2006
31st IEEE Conference on, pages 641–648. IEEE, 2006.


