
学術交流支援資金報告書
アカデミックプロジェクト ノーベル・コン

ピューティング：AIと脳科学
研究課題名：データ駆動ロボティクスの創出

川島英之 *

March 28, 2022

1 Motivation: TF

The TF library on ROS centrally manages the transformations between each
coordinate system as a directed tree structure, allowing for efficient registration
of transformation information between coordinate systems and computation of
transformations between Coordinate systems [2]. Left side of Fig 1 shows a
robot and two objects in a room. The tree on the right side represents the
positional relationship between each coordinate system on the robot and objects.
A node represents each coordinate system, and an edge indicates the existence
of coordinate transformation information (CTI) from a child node to its parent
node.

Robot object

The origin of the coordinate system and the direction of the XY axis

map

robot

object2object1

Figure 1: Robots in the room, and its TF tree structure.

*慶應義塾大学環境情報学部



time
current

futurepast

Real CTI registered

by sensor

Synthetic CTI generated

by interpolation

A

robot map

object1 robot

object2 robot

Figure 2: Timeline of location registration in 1

The CTI between frames can be registered at different times because the reg-
istration sources are sensor and sensors may have different periods. To provide
a temporally consistent view of data, TF stores the CTI between each frame for
10 seconds by using linear interpolation. Fig 2 represents the timing at which
the CTI between each frame is registered for the case shown in Fig 1.

In the situation of Fig. 1 and 2, the latest position relation from object1

to map is calculated by TF as follows. First, TF checks each edge from object1

to map. Next, TF checks the time at which we can provide the most recent and
temporally consistent coordinate transformation possible for any edge. When
the CTI of a certain time is stored or can be obtained by interpolation, TF con-
siders that the CTI at that time can be provided. Fig 2 indicate that, the oldest
time when the latest CTI is registered in object1→robot and robot→map is
robot→map. Because the time A is the minimum among the maximum of two
edges, time A is selected. Finally, TF computes the data for each edge at time
A by interpolation, and conducts transformation by multiplying them.

2 Problem

TF manages positional relationships between coordinate systems, it has the
following problems.

Problem 1: Giant Lock. The TF tree structure has an algorithm that
prevents other threads from accessing the tree structure when one thread is
accessing it. This may cause problems in throughput and latency in today’s
world where multi-core computing is the norm.

Problem 2: Data Freshness. Since the TF interface does not use the lat-
est CTI as in the object1 → robot example above, the data freshness is usually
lost, which may deteriorate the quality in control or self-positioning. Besides,
this specification requires frequent data registration even when the positional
relationship between coordinate systems does not change much, resulting in
unnecessary processing.

Problem 3: Transactional Correctness. As a solution to problem
2, it is not sufficient to provide an interface that performs inter-frame coordi-
nate transformation calculations based on the latest coordinate transformation



 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 0  50  100  150  200  250

T
hr
ou
gh
pu
t(
ta
sk
/s
e
c)

thread

Conventional (TF)
Proposed (TF + Xact)

Figure 3: Throughput. Higher is better.

data. This is because the data consistency may be lost if inter-frame coordi-
nate transformation calculations are performed based on the latest coordinate
transformation data while multiple coordinate transformation data are being
registered. It may produce transaction anomaly [1], which must be avoided.

3 Proposal

To solve problem 1, we present a decentralized design of TF with the fine-grained
locking. We provide a mutex for a frame so that multile worker threads can
access multiple frames in parallel when they invoke the conventional lookup-
Transform() and setTransform(). We implemented our locking system based
on CCBench [3] so that it does not incur any contentions on read-read conflicts
between two transactions.

To solve problem 2, we present new interfaces. lookupLatestTransform()
returns the last data. The new interface may read stale data on object X
while fresh data on object Y concurrently, which is temporally inconsistent
referred to as anomaly [1]. To avoid the anomaly (i.e. problem 3), we present
transactional interfaces for TF based on the two phase locking protocol. Our
lookupLatestTransformXact() atomically retrieve the latest data of multiple
coordinate transformations, and our setTransformsXact() atomically update
the latest data of multiple coordinate transformations.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250

re
a
d 
la
te
nc
y 
(m
s)

thread

Conventional (TF)
Proposed (TF + Xact)

Figure 4: Latency. Shorter is faster.

4 Result

We installed ROSMelodic Morenia onto a Ubuntu 18.04 node, and experimented
with a modified implementation of melodic-devel from the Github repository of
the TF. Our code is available online [4].

We used a server with four Intel(R) Xeon(R) Platinum 8176 CPUs @ 2.10GHz.
The total number of logical cores was 224. The workload is similar to the
YCSB-A [3], and each transaction include 50% of read and write operations
respectively. For all experiments, we chose a run time of 60 seconds, a time that
yielded stable results.

The result of experiments are illustrated in Fig. 3, 4, and 5. As seen in Fig.
3, proposal shows scalable throughput. It is 143 times larger than that of TF
on 224 threads. As seen in Fig. 4, proposal shows low latency even with 224
threads. It is 208 times shorter than that of TF. As seen in Fig. 5, the proposal
shows low delay which is the difference from the timestamp of read access and
the timestamp of data generation. On 224 threads, the delay of proposed TF
is 132 times shorter than that of TF. These imporovement would be provided
by fine grained locking because oritinal TF requires threads to acquire a giant
lock even for accessing different frames.



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250

de
la
y 
(s
)

thread

Conventional (TF)
Proposed (TF + Xact)

Figure 5: Delay. Shorter is more fresh.

5 Conclusion

TF tree access is not scalable due to a giant lock and does not provide the
latest data. Our proposed method solved the problems by applying the fine-
grained locking and 2 phase locking protocol. We showed that the proposed
method achieved up to 143 times faster throughput, up to 208 times shorter
latency, and up to 132 times data freshness than the conventional TF. Our code
is available online [4].

References

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ansi sql isolation levels. In SIGMOD Conf., pages 1–10, 1995.

[2] T. Foote. tf: The transform library. In TePRA, pages 1–6, 2013.

[3] T. Tanabe, T. Hoshino, H. Kawashima, and O. Tatebe. An analysis of con-
currency control protocols for in-memory databases with ccbench. PVLDB,
13(13):3531–3544, 2020.

[4] https://github.com/Ogiwara-CostlierRain464/geometry2, 2022. [On-
line; accessed 17-January-2022].


